Chapter 8

NOBLE GASES

M.F.A. Dove

8.1	THE ELEMENTS	471
8.2	KRYPTON(II) AND XENON(II)	472
8.3	XENON(IV)	473
8.4	XENON(VI)	473
8.5	XENON (VIII)	474
DEBEDENCES		475

8.1 THE ELEMENTS

Although the use of noble gases to provide transparent and inert solid matrices is not reviewed here, it is nevertheless appropriate to draw attention to the more recently developed use of liquified noble gases as solvents. The transparency of such solvents, when pure, towards infrared and visible electromagnetic radiation is an attractive feature. A group of workers at the Los Alamos Scientific Laboratory have reported on the solubility of MoF₆, CO₂, HCHO, HN₃, MeOH, CCl₄, and SO₂ in liquid krypton over the temperature range 118 to 165K. The data at 140K range from 0.1 mol ℓ^{-1} for CO₂ to 2 x 10⁻⁴ mol ℓ^{-1} for HN₃. Methanol was shown to dissolve as dimers or higher aggregates. The transient near-1.r. absorptions of irradiated noble gases have been studied further: Kasama et al. have assigned them to electronic transitions of the excited diatomic molecules.

The kinetics of the heterogeneous reaction (1) have been reported: 3 from the temperature dependence the effective activation energy was calculated to be 17 ± 2 kcal mol $^{-1}$. Stein 4

$$xe + 20_2 SbF_6 + 20_2 + FxeSb_2 F_{11}$$
 ...(1)

has described the conditions under which xenon is oxidised by 0010-8545/84/\$03.00 © 1984 Elsevier Science Publishers B.V.

elemental fluorine in the dark in the presence of liquid ${\rm SbF}_5$. The dixenon cation, ${\rm Xe_2}^+$, is formed as a labile intermediate, which is then oxidised by ${\rm F_2}$ to ${\rm XeF}^+$. The rate of the overall reaction is proportional to the partial pressure of both Xe and ${\rm F_2}$. The overall reaction provides a simple method for preparing ${\rm XeF}^+{\rm Sb}_2{\rm F}_{11}^-$.

The transient species resulting from the photodissociation of F_2 in Xe/ F_2 and Xe/Ar/ F_2 mixtures has been monitored by UV kinetic absorption spectroscopy and by laser fluorescence. The calculated heat of formation of XeF(g), 15.5 kcal mol⁻¹, is based upon the measured dissociation energy of ground state XeF (3.4 kcal): hence Messing and Smith deduced that the energy required to remove the first fluorine from XeF₂ is ca. 61 kcal mol⁻¹. This helped them to understand that reaction (2) appears to be

$$XeF + F_2 + XeF_2 + F$$
 ...(2)

$$XeF + XeF \rightarrow XeF_2 + Xe$$
 ...(3)

the main process by which XeF is converted to XeF_2 in their systems at low pressures. At higher pressures reaction (3) may also be important.

8.2 KRYPTON(II) AND XENON(II)

Spitzin et al. 6 have described the synthesis of ${\rm LnF_4}$ (${\rm Ln}={\rm Ce}$, ${\rm Pr}$ and ${\rm Tb}$) and ${\rm Cs_3 LnF_7}$ (${\rm Ln}={\rm Ce}$, ${\rm Tb}$, ${\rm Pr}$, ${\rm Dy}$ and ${\rm Nd}$) by fluorination reactions involving noble gas fluorides. Thus ${\rm PrF_4}$ could be prepared only by the reaction of ${\rm KrF_2}$ with ${\rm PrO_2}$.

An X-ray crystallographic study of fluoro[imidobis(sulphuryl fluoride)] xenon(II), FXeN(SO₂F)₂, has provided definitive proof that this molecule indeed contains, see Figure 1, a Xe-N and a Xe-F bond which are essentially colinear, FXeN angle 178.1°, at -55°C. The 15 N and 129 Xe n.m.r. study of the compound in solution in BrF₅ has provided fuller proof that the structure in solution is the same. A new system containing Xe(II) bonded to N has been reported: 8 it is derived from the recently prepared $({\rm CF_3SO_2})_2{\rm NH}$ by the reaction with XeF₂. A cleaner reaction was obtained via the trimethylsilylimide intermediate $({\rm CF_3SO_2})_2{\rm NSiMe_3}$. This reacts with XeF₂ according to equation (4) in high yield. The novel compound is a solid, stable under N₂ or in vacuo at 22°C

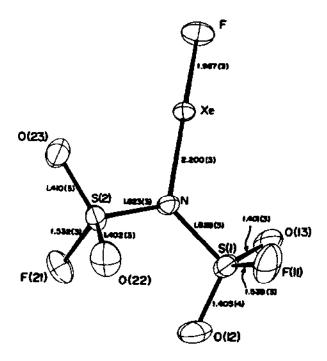


Figure 1. A perspective drawing of FXeN(SO₂F)₂ showing the bond lengths (A) and thermal ellipsoids drawn at the 50% probability level (reproduced by permission from Inorg. Chem., 21(1982)4065).

for several days. It decomposes at 72°C to give Xe, C2F6,

$$2\text{Me}_3\text{SiN}(\text{SO}_2\text{CF}_3)_2 + \text{XeF}_2 \rightarrow \text{Xe}(\text{N}(\text{SO}_2\text{CF}_3)_2)_2 + 2\text{Me}_3\text{SiF}$$
 ...(4)

 $(CF_3SO_2)_2NCF_3$, and $CF_3SO_2NSO_2$. There was no evidence for the formation of $(CF_3SO_2)_2NXeF$ in any of these reactions. Huston has investigated the ammonolysis of XeF_2 and detected Xe, N_2 , EF and ammonium fluoride.

8.3 XENON(IV)

Xenon(IV) fluoride reacts with NH $_3$ similarly but forms XeF $_2$ as an intermediate product. The hydrolysis of XeF $_4$ has also been reinvestigated by Huston.

8.4 XENON(VI)

Xenon(VI) fluoride yields a range of ammonolysis products; with

excess ammonia the products are the same as those yielded by XeF_2 and XeF_4 . However with excess XeF_6 an explosive white solid was reported, for which some formulations were proposed. A more controlled hydrolysis of XeF_6 has been achieved by the reaction with HOPOF_2 . Yellow $\operatorname{NF}_4\operatorname{XeF}_7$ and white $(\operatorname{NF}_4)_2\operatorname{XeF}_8$ have been prepared from XeF_6 and $\operatorname{NF}_4\operatorname{HF}_2$ and by reaction (5), respectively. Leven the XeF_7 salt was shown to undergo solvolysis in BrF_5 . The

$$2NF_4XeF_7 \xrightarrow{488nm} (NF_4)_2XeF_8 + XeF_6 \qquad ...(5)$$

presence of different phases in solid XeF $_6$ was confirmed by Christe and Wilson 11 by Raman spectroscopy. They also prepared CsXeF $_7$, Cs $_2$ XeF $_8$ and NaXeF $_7$.

Pulse radiolysis of aqueous XeO_3 and HXeO_4^- has been shown to produce Xe(V) and Xe(VII) species respectively. The hydrated electron converts XeO_3 to HXeO_3 and the hydroxyl radical converts it to HOOXeO_2 .

8.5 XENON(VIII)

An improved synthesis of perxenates has been published by Foropoulos and DesMarteau 10 in which the XeF $_6$ is hydrolysed initially by HOPOF $_2$; subsequent hydrolysis of XeO $_3$ gave pure Na $_4$ XeO $_6$ in high yield.

Pulse radiolysis of Xe(VIII) yields evidence for Xe(VII) and Xe(IX) depending on the reaction conditions. 12

Huston has reported the melting point of XeO_4 (-35.9°C) and of XeO_3F_2 (-54.1°C) as well as some vapour pressure measurements for the latter.

REFERENCES

- W.H.Beattie, W.B.Maier, S.M.Freund and R.F.Holland, J. Phys. Chem., 86(1982)4351.
- 2 K.Kasama, T.Oka, S.Arai, H.Kurusu and Y.Hama, J. Phys. Chem., 86(1982)2035.
- 3 A.B. Myasoedov, L.P. Nikolenko and L.D. Shustov, Russ. J. Inorg. Chem., 27(1982)892.
- 4 L.Stein, J. Fluorine Chem., 20(1982)65.
- 5 I. Messing and A.L. Smith, J. Phys. Chem., 86(1982)927.
- 6 V.I.Spitzin, L.I.Martynenko and Ju.M.Kiselew, Z. Anorg. Chem., 495(1982)39.
- J.F.Sawyer, G.J.Schrobilgen and S.J.Sutherland, J. Chem. Soc. Chem. Commun., (1982)210; Inorg. Chem., 21(1982)4064.
- 8 J.Foropoulos and D.D.DesMarteau, J. Am. Chem. Soc., 104(1982)4260.
- 9 J.L. Huston, Inorg. Chem., 21(1982)685.
- 10 J. Foropoulos and D.D. DesMarteau, Inorg. Chem., 21(1982)2503.
- 11 K.O.Christe and W.W.Wilson, Inorg. Chem., 21(1982)4113.
- 12 U.K.Kläning, K.Sehested, T.Wolff and E.H.Appelman, J. Chem. Soc. Faraday Trans. 1, 78(1982)1539.